№ 1 (17) – 2022

ADDITIVE TECHNOLOGIES IN THE PRODUCTION OF BODY ARMOR 

https://doi.org/10.37129/2313-7509.2022.17.5-13
 
завантаження

V. Bachynskyi, PhD in Technical Sciences, Senior Researcher Scientist

 

завантаження

O. Shkurpit

 

завантаження

M. Oleniev, PhD in Technical Sciences, Associate Professor

 

завантаження

I. Kolesnyk, PhD in Technical Sciences, Associate Professor

завантаження L. Hamanyuk
 
 

Cite in the List of bibliographic references (DSTU 8302:2015)

Бачинський В. В., Шкурпіт О. М., Оленєв М. В., Колесник Є. В., Гаманюк Л. О. Адитивні технології у виробництві бронежилетів. Збірник наукових праць Військової академії (м. Одеса). 2022. Вип. 1(17). С. 5-13. https://doi.org/10.37129/2313-7509.2022.17.5-13 

 

Abstract

The article analyzes existing and promising body armor made using additive technologies (AT) by leading companies in the world. Considered in the article are samples of bulletproof vests, which in the future will take their rightful place in the list of military protection systems that will be used in modern combat and perform additional specific tasks. The problems and tasks that are created during the development of bulletproof vests and the directions for their solution with the help of AT are also identified.
Modern equipment and material capabilities are rapidly evolving towards larger product sizes, higher precision and quality, faster print speeds and lower costs. The use of AT is also clearly illustrated by the example of optimizing the design of promising bulletproof vests. When using traditional methods of production, the cost and complexity of body armor is quite high. The use of AT can significantly reduce the weight of bulletproof vests by reducing material consumption. It was determined that with the improvement of technological equipment and the development of design methods, the direction of creating new bulletproof vests with the help of AT will steadily expand.
The conducted studies have shown that the use of AT in the production of bulletproof vests at the present stage will improve the characteristics of bulletproof vests, reduce the overall weight and ensure the printing of bulletproof vests in the field. AT will also be able to quickly manufacture complex products and spare parts and elements that either cannot be manufactured using traditional manufacturing technologies or are needed in small quantities.
Today it is already quite obvious that the development of AT will entail the adjustment of design principles, the development of printing technologies, the use of new strategies for building modern printers, the emergence of new technologies related to 3D printing, but the future is clearly in the widespread use of additive technologies in the production of bulletproof vests.

Keywords

additive technologies, body armor, 3D printing.
 

List of bibliographic references

  1. Интернет-портал и аналитическое агентство: Аддитивное производство (AdditiveManufacturing).URL: http://www.tadviser.ru/index.php/ (дата звернення: 23.03.2022).
  2. Журнал Control EngineeringURL: https://controlengrussia.com/innovatsii/ robototehnika/robotizirovannoe-additivnoe-proizvodstvo/ (дата звернення: 25.03.2022).
  3. Ерёмин Г. В., Гаврилов А. Д., Назарчук И. И. Малоразмерные беспилотники – новая проблема для ПВО. Военно-патриотический сайт «Отвага». URL: http://otvaga2004.ru. (дата звернення: 12.03.2022).
  4. 3D printing community. MakerBot's Thingiverse.URL: https://www.thingiverse.com/ (дата звернення: 20.03.2022).
  5. Учебный центр ведущих мировых производителей 3D-принтеров.URL: https://blog.iqb.ru/additive-technologies-in-production/ (дата звернення: 07.03.2022).
  6. Relativity Space, Inc.: the world’s first autonomous rocket factory and launch services leader for satellite constellations.Relativity Space. URL: https://www.relativityspace.com/stargate/ (дата звернення: 25.03.2022).
  7. Гибсон Я. Технологии аддитивного производства / Я.Гибсон, Д.Розен, Б.Стакер; пер. с англ., под ред. И. В.Шишковского. Москва : Техносфера, 2016. 646 с.
  8. Spoerk M., Holzer C., Gonzalez-Gutierrez J. Material extrusionbased additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science. 2020. Vol. 137. Issue 12. P. 48545. DOI: https://doi.org/10.1002/app.48545
  9. Rosli A. A., Shuib R. K., Ishak K. M. et al. Influence of bed temperature on warpage, shrinkage and density of various acrylonitrile butadiene styrene (ABS) parts from fused deposition modelling (FDM). AIP Conference Proceedings. 2020. Vol. 2267. Issue 1. P. 020072. DOI: https://doi.org/10.1063/5.0015799
  10. Dilberoglu U. M., Simsek S., Yaman U. Shrinkage compensation approach proposed for ABS material in FDM process. Materials and Manufacturing Processes. 2019. Vol. 34. Issue 9. P. 993998. DOI: https://doi.org/10.1080/10426914.2019.1594252
  11. Бачинський В. В., Кондратенко О. І., Кондратенко В. С., Шкурпіт О. М. Адаптивні технології у виробництві безпілотних літальних апаратів. Збірник наукових праць Військової академії (м. Одеси). Одеса : ВА, 2021. Вип.1(15). С. 6–14. DOI: https://doi.org/10.37129/2313-7509.2021.15.6-14.
 
 
 

References

  1. Internet portal and analytical agency: Additive Manufacturing. (n.d.). Retrieved from http://www.tadviser.ru/index.php/[in Russian].
  2. Journal of Control Engineering.(n.d.). Retrieved from https://controlengrussia.com/innovatsii/robototehnika/robotizirovannoe-additivnoe-proizvodstvo/[in Russian].
  3. Eryomin, G. V., Gavrilov, A. D., & Nazarchuk, I. I. (n.d.). Small-scale drones are a new problem for air defense. Military-patriotic website "Courage". Retrieved from http://otvaga 2004.ru.[in Russian].
  4. 3D printing community. (n.d.).MakerBot's Thingiverse.Retrieved from https://www.thingiverse.com/ [in English].
  5. Training center of the world's leading manufacturers of 3D printers.(n.d.). Retrieved from https://blog.iqb.ru/additive-technologies-in-production/ [in Russian].
  6. The world's first autonomous rocket factory and launch services leader for satellite constellations. (n.d.). Relativity Space.Retrieved from https://www.relativityspace.com/stargate/ [in English].
  7. Gibson, J., Rosen,D., & Staker, B. (2016). Technologies of additive manufacturing.(I.V. Shishkovsky Trans.). [in Russian].
  8. Spoerk, M., Holzer, C., & Gonzalez-Gutierrez, J. (2020). Material extrusionbased additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science, 137, 12, 48545. DOI: https://doi.org/10.1002/app.48545 [in English].
  9. Rosli, A. A., Shuib, R. K., & Ishak, K. M. et al. (2020). Influence of bed temperature on warpage, shrinkage and density of various acrylonitrile butadiene styrene (ABS) parts from fused deposition modelling (FDM). AIP Conference Proceedings, 2267, 1, 020072. DOI: https://doi.org/10.1063/5.0015799 [in English].
  10. Dilberoglu, U. M., Simsek, S., Yaman, U. (2019). Shrinkage compensation approach proposed for ABS material in FDM process. Materials and Manufacturing Processes, 34, 9, 993–998. DOI: https://doi.org/10.1080/10426914.2019.159425 [in English].
  11. Bachynskyi, V., Kondratenko, O., Kondratenko, V., & Shkurpit, O. (2021). Additive technologists at the production of unmanned aerial vehicles. Collection of scientific works of Odesa Military Academy, 1(15), 6–14. [in Ukrainian].
Copyright 2014 17.5-13 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free