№ 1 (19) – 2023

ANALYTICAL FUNCTIONS OF NONLINEAR PROJECTILE FLIGHT PARAMETERS

https://doi.org/10.37129/2313-7509.2023.19.5-16
 
завантаження V. Мaidaniuk

 

завантаження S. Bondarenko, Candidate of Technical Sciences, Associate Professor
завантаження V. Hrabchak, Doctor of Technical Sciences, Professor
 
FULL TEXT: PDF (in Ukrainian)
 

Cite in the List of bibliographic references (DSTU 8302:2015)

Майданюк В. А., Бондаренко С. В., Грабчак В. І. Аналітичні функції нелінійних параметрів польоту снаряда. Збірник наукових праць Військової академії (м. Одеса). 2023. № 1 (19). С. 5-16. https://doi.org/10.37129/2313-7509.2023.19.5-16
 

Abstract

When calculating projectile flight trajectories, an urgent issue is the definition and representation of aerodynamic forces (moments) and parameters of the atmosphere, which are significantly non-linear in nature, in the system of mathematical models - differential equations of spatial motion of projectiles. A significant component of the error in determining the aerodynamic force is introduced by the operation of numerical differentiation of tabular values of aerodynamic coefficients, which are included as components in systems of differential equations. In this direction, a scientific approach based on the approximation of the data of aerodynamic coefficients and parameters of the atmosphere by analytical functions is promising, the requirement for which is the possibility of obtaining a single and continuous function within the entire range of changes in the flight parameters of the projectile and ensuring their best approximation to tabular data. A unified approach to the possibility of approximating qualitatively different aerodynamic coefficients and parameters of the atmosphere found further development; as approximating functions, it is proposed to use an analytical function as the sum of a reference function (error function) and a set of basic functions (Gaussian functions), which allows to obtain a continuous-differentiated approximating function on the segment of the change of the projectile flight parameter, which can be represented by a single analytical expression. The obtained values of the single continuous-differentiated on the segment of the change of the projectile flight parameter approximating the function of the aerodynamic coefficients and the parameters of the atmosphere, which are given by a single analytical expression, can be used to solve the problems of calculating Firing tables and preparing data using ballistic integrating algorithms for firing artillery systems.

Keywords

aerodynamic forces (moments), parameters of the atmosphere, projectile, approximation, differentiation, analytical expression, error function, Gaussian function. 
 
 

List of bibliographic references

  1. Дмитриевский А. А., Лисенко Л. Н. Внешняя баллистика : учебник. Москва : Машиностроение, 2005. 607 с.
  2. Carlucci D. E., Jacobson S. S. Ballistics, theory and design of guns and ammunition : book. London, New York: Taylor & Francis Group, 2007. 514 p.
  3. Баллистика : учебник / С. В. Беневольский и др. / за ред. Л. Н. Лисенко. Пенза : ПАИИ, 2005. 510 с.
  4. McCoy R. L. Modern Exterior Ballistics. Atglen, PA. : Schiffer Military History, 2012. 328 p.
  5. Степанов В. П. Внешняя баллистика. Ч.II. Томск : Изд-во Том. ун-та, 2011. 542 с.
  6. Ефремов А. К. Аппроксимация закона сопротивления воздуха 1943 г. Наука и образование. Москва : МГТУ им. Н.Э. Баумана, 2013. Вып. 10. С. 269–282.
  7. Грабчак В. І., Косовцов Ю. М., Бондаренко С. В. Апроксимація сили опору повітря руху снарядів аналітичними функціями. Сучасні інформаційні технології у сфері безпеки та оборони. Науковий журнал. 2014. Вип. 1 (19). С. 19–23.
  8. Грабчак В. І., Бондаренко С. В., Косовцов Ю. М. Апроксимація аналітичними функціями сили опору повітря руху снарядів. Новітні технології – для захисту повітряного простору : тези доп. десятої наук. конф. ХУПС ім. Івана Кожедуба 9-10 квітня 2014 р. Харків, 2014. С. 227–228.
  9. Australian Army Assegai 155mm Artillery Ammunition. MilitaryLeak. URL: https://militaryleak.com/2020/10/09/assegai-155mm-artillery-ammunition/ (date of access: 10.02.2023).
  10. L. Effect of the mathematical model and integration step on the accuracy of the results of computation of artillery projectile flight parameters. Bulletin of the Polish Academy of sciences technical sciences. 2013.Vol. 61, No. 2, pp. 475–484. DOI: 10.2478/bpasts-2013-0047.
  11. STANAG 4355 (Edition 3), The modified point mass and five degrees of freedom trajectory models: NSAl0454(2009)-JAIS/4355, dated 17 April 2009. 95 p. (NATO Standardization Agency).
  12. KincaidNumerical analysis. Brooks: Cole Publishing Company. 1991. 690 p.
  13. Калиткин Н. Н. Численные методы. Москва : Наука, 1978. 512 с.
  14. Ибрагимов И. И. Теория приближения целыми функциями. Баку : ЭЛМ, 1979. 377 с.
  15. Справочник по специальним функциям / под ред. М. Абромовица, И. Стигана. Москва : Наука, 1979. 832 с.
  16. ISO 2533:1975 Standard Atmosphere. International Standards Shop EMEA – SAI Global Infostore. URL: https://infostore.saiglobal.com/en-us/standards/iso-2533-1975-r2007--611198_saig_iso_iso_1401706/ (date of access: 10.02.2023).
 
 
 

References

 
  1. Dmitriyevskiy, A. A., & Lisenko, L. N. (2005).External ballistics. MashinostroyeniyePubl. [in Russian].
  2. Carlucci, D. E., & Jacobson, S. S. (2007). Ballistics, theory and design of guns and ammunition : book. London, New York : Taylor & Francis Group.
  3. Benevol'skiy, S. V., & Lisenko, L. N. (Ed.). (2005). Ballistics.PAII Publ. [in Russian].
  4. McCoy, R. L. (2012). Modern Exterior Ballistics. Atglen, PA. : Schiffer Military History.
  5. Stepanov V. P. (2011). Vneshnyayaballystyka[Externalballistics]. CH.II.Tomsk : Yzd-voTom. un-ta. [in Russian].
  6. Efremov,A. K. (2013). Approximation of the 1943 air resistance law. Naukay obrazovanye, 10, 269-282. [in Russian].
  7. Hrabchak,V. I., Kosovtsov,Yu. M., & Bondarenko,S. V. (2014). Approximation of the support force in terms of the movement of projectiles by analytical functions. Suchasni informatsiyni tekhnolohiyi u sferi bezpeky ta oborony. Naukovyy zhurnal,1 (19),19–23. [in Ukrainian].
  8. Hrabchak, V.I., Bondarenko, S. V., & Kosovtsov, Yu. M. (2014). Approximation by analytical functions of force to support the movement of shells. New technologies - for the sake of open space: Abstracts of Papers of the 10rd Conf. HUPS im. Ivan Kozhedub, April 9-10, 2014. (pp. 227–228). [in Ukrainian].
  9. Australian Army Assegai 155mm Artillery Ammunition. (n. d.). MilitaryLeak. https://militaryleak.com/2020/10/09/assegai-155mm-artillery-ammunition/
  10. Baranowski, L. (2013). Effect of the mathematical model and integration step on the accuracy of the results of computation of artillery projectile flight parameters.Bulletin of the Polish Academy of Sciences: Technical Sciences,61(2), 475–484.https://doi.org/10.2478/bpasts-2013-0047.
  11. STANAG 4355 (Edition 3). The modified point mass and five degrees of freedom trajectory models : NSAl0454(2009)-JAIS/4355, dated 17 April 2009. 95 p. (NATO Standardization Agency).
  12. Kincaid, D.(1991). Numerical analysis. Brooks: Cole Publishing Company.
  13. Kalitkin,N. N. (1978). NumericalMethods.Nauka Publ. [in Russian].
  14. Ibragimov,I. I. (1979). Approximation theory by entire functions.ELM Publ. [in Russian].
  15. Abromovitsa, M., &Stigana, I. (Eds.). (1979).Special Functions Reference. Nauka Publ.[in Russian].
  16. ISO 2533:1975 Standard Atmosphere. (n. d.). International Standards Shop EMEA – SAI Global Infostore.https://infostore.saiglobal.com/en-us/standards/iso-2533-1975-r2007--611198_saig_iso_iso_1401706/
Copyright 2014 19.5-16 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free