|
This work presents the methodology of using wasted lubricants as a highly efficient fuel as water-fuel emulsions, which containing up to 70% water. They burning in burners under conditions of action high-frequency electrical discharges. It has been shown that the viscosity of a water-oil emulsion with a high water part (more than 50%) outweighs the viscosity of pure oil. With a low water part (10-20%), the emulsion is the most stable. With more water, the semi-delamination time decreases. Therefore, it is necessary to spray the emulsion near the site of the making.
The results of natural experiments and prospects of the proposed methodology are given. Combustion of a water-in-oil emulsion with a volume content of 50-70% water is possible in the presence of a discharge of high-frequency signals. Independent combustion of the emulsion without the support of a small diesel fuel torch is possible with sufficient heating of the combustion chamber. To implement combustion, the burner for liquid fuels was modernized by adding a pre-chamber between the burner and the nozzle or boiler.
To organize effective spraying of water-oil emulsion with a large amount of water (up to 70%), it is necessary to ensure sufficient heating of the emulsion in the pipelines. First, this reduces its viscosity, making it easier to pump the emulsion through the supply systems of the spraying device. Otherwise, it is necessary to serve under a pressure, so that the water at a high temperature (above 100 ° C) is remained liquid. When leaving the nozzle under pressure, the water “boils” (“micro-bump” drops of emulsion), which further disperses the burning liquid.
The peculiarity of this burner is the action of a high-frequency streamer in the area of spraying emulsion droplets inside the forechamber. The use of water-fuel emulsions allows to reduce emissions of nitrogen oxides and carbon monoxide, reduce its fire and explosion hazard during transportation and storage. Effectiveness assessment of this complex showed that energy expenditures can reach percents of levels compared to full heat release.Thus, the possibility of using such water-oil emulsions as alternative fuels is shown.
|
|
-
Калейников Г.Е. Отработанные масла в качестве энергоресурса. AQUATherm. 2015. №3. С.50–54.
-
Arumugam K., Veeraraja S., Esakkimuthu P. Combustion of waste/ used oil by using specialized burner. International Journal of Applied Engineering Research. 2013. Vol. 8(15). P. 1839–1845.
-
Zhao N., Li B., Chen D., Ahmad R., Zhu Y., Li G. and ets. Direct combustion of waste oil in domestic stove by an internal heat re-circulation atomization technology: Emission and performance analysis. Waste Management. 2020. Vol.104. P. 20–32. URL: https://doi:10.1016/j.wasman.2020.01.007.
-
Деякі питання збирання, перевезення, зберігання, оброблення (перероблення), утилізації та/або знешкодження відпрацьованих мастил (олив): Постанова Каб. Міністрів України від 17.12.2012р. №1221: станом на 17верес. 2020р. URL:https://zakon.rada.gov.ua/laws/show/1221-2012-п#Text(дата звернення: 09.09.2023).
-
Yiguang Ju. Plasma assisted combustion: Dynamics and chemistry. Progress in Energy and Combustion Science. 2015. Vol.48. P.21–83.
-
Li M., Wang Z., Xu R., Zhang X., Chen Z., Wang Q. Advances in plasma-assisted ignition and combustion for combustors of aerospace engines. Aerospace Science and Technology. 2021. Vol. 117. P. 106952. URL: https://doi.org/10.1016/j.ast.2021.106952.
-
Bityurin V. A., Klimov A. I., Korshunov O. V., Chinnov V. F. Kinetic model of aluminum oxidation by water vapor in heterogeneous plasma: Gas-phase kinetics. High Temperature. 2014. Vol.52. P. 621–626. URL: https://doi.org/10.1134/S0018151X14050034.
-
Alekseenko S. V., Anufriev I. S., Vigriyanov M. S., Kopyev E. P., Sharypov O. V. Characteristics of diesel fuel combustion in a burner with injection of a superheated steam jet.Combustion, Explosion, and Shock Waves.2016. Vol. 52 P.286–293. https://doi.org/10.1134/S0010508216030059.
-
Решетников А.В., Бусов К.А., Мажейко Н.А., Скоков В.Н., Коверда В.П. Переходные режимы вскипания струй перегретой воды.Теплофизика и аэромеханика. 2012. Т. 19, № 3. С. 359–367.
-
Pei X., Guida P., AlAhmadi K. M., Al Ghamdi I. A., Saxena S., Roberts W. L. Cenosphere formation of heavy fuel oil/water emulsion combustion in a swirling flame. Fuel Processing Technology. 2021. Vol. 216. P. 106800. URL: https://doi.org/10.1016/j.fuproc.2021.106800.
-
Jinkyu Park, Jungmo Oh Study on the characteristics of performance, combustion, and emissions for a diesel water emulsion fuel on a combustion visualization engine and a commercial diesel engine.Fuel. 2022. Vol. 311. P. 122520. URL: https://doi.org/10.1016/j.fuel.2021.122520.
-
Kichatov B., Korshunov A., Gubernov V., Kiverin A., Yakovenko I. Combustion of heptane-in-water emulsion foamed with hydrogen-oxygen mixture. Fuel Processing Technology. 2020. Vol.198. P. 106230. URL: https://doi.org/10.1016/j.fuproc.2019.106230.
-
Kichatov B., Korshunov A., Kiverin A., Medvetskaya N. Combustion of foamed emulsion prepared via bubbling of oxygen-nitrogen gaseous mixture through the oil-in-water emulsion.Fuel Processing Technology.2019. Vol. 186. P. 25–34. URL: https://doi.org/10.1016/j.fuproc.2018.12.019.
-
Kichatov B., Korshunov A., Kiverin A., Ivanov M. Effect of ultrasonic emulsification on the combustion of foamed emulsions. Fuel Processing Technology. 2018. Vol. 169. P. 178–190. URL: http://dx.doi.org/10.1016/j.fuproc.2017.10.001.
-
Стариков М. А., Хлебникова М. Е., Буланин Ф. К., Сидоров А. Е., Полетаев Н. И., Шевчук В. Г. Горение диспергированного жидкого и твердого топлива в присутствии электрических разрядов. Фізика аеродисперсних систем. 2018. № 55. С. 59–70.
|
|
-
Kaleynikov, G. E. (2015). Used oils as an energy resource. AQUATherm, 3, 50–54. [in Russian].
-
Arumugam, K, Veeraraja, S., & Esakkimuthu, P. (2013). Combustion of waste/ used oil by using specialized burner. International Journal of Applied Engineering Research, 8(15), 1839–1845.
-
Zhao, N., Li, B., Chen, D., Ahmad, R., Zhu, Y., Li, G., Yu, Z., Li, J., Wang, E., Yun, S., Yoon, H., Yoon, I., Zhou, Y., Dong, R., Wang, H., Cao, J., He, J., & Ju, X. (2020). Direct combustion of waste oil in domestic stove by an internal heat re-circulation atomization technology: Emission and performance analysis. Waste Management, 104, 20–32. https://doi.org/10.1016/j.wasman.2020.01.007.
-
-
Yiguang, Ju. (2015). Plasma assisted combustion: Dynamics and chemistry. Progress in Energy and Combustion Science, 48, 21–83.
-
Li, M., Wang, Z., Xu, R., Zhang, X., Chen, Z., & Wang, Q. (2021). Advances in plasma-assisted ignition and combustion for combustors of aerospace engines. Aerospace Science and Technology, 117, 106952. https://doi.org/10.1016/j.ast.2021.106952.
-
Bityurin, V. A., Klimov, A. I., Korshunov, O. V., & Chinnov, V. F. (2014). Kinetic model of aluminum oxidation by water vapor in heterogeneous plasma: Gas-phase kinetics. High Temperature, 52(5), 621–626. https://doi.org/10.1134/s0018151x14050034.
-
Alekseenko, S. V., Anufriev, I. S., Vigriyanov, M. S., Kopyev, E. P., & Sharypov, O. V. (2016b). Characteristics of diesel fuel combustion in a burner with injection of a superheated steam jet. Combustion, Explosion, and Shock Waves, 52(3), 286–293. https://doi.org/10.1134/s0010508216030059.
-
Reshetnikov, A. V., Busov, K. A., Mageyko, N. A., Skopov, V. N., & Koverda, V. P. (2012). Transitional regimes of boiling jets of superheated water. Thermophysics and aeromechanics, 19, 3, 359–367. [in Russian].
-
Pei, X., Guida, P., Al Ahmadi, K. M., Al Ghamdi, I. A., Saxena, S., & Roberts, W. L. (2021). Cenosphere formation of heavy fuel oil/water emulsion combustion in a swirling flame. Fuel Processing Technology, 216, 106800. https://doi.org/10.1016/j.fuproc.2021.106800.
-
Park, J., & Oh, J. (2022). Study on the characteristics of performance, combustion, and emissions for a diesel water emulsion fuel on a combustion visualization engine and a commercial diesel engine. Fuel, 311, 122520. https://doi.org/10.1016/j.fuel.2021.122520.
-
Kichatov, B., Korshunov, A., Gubernov, V., Kiverin, A., & Yakovenko, I. (2020). Combustion of heptane-in-water emulsion foamed with hydrogen-oxygen mixture. Fuel Processing Technology, 198, 106230. https://doi.org/10.1016/j.fuproc.2019.106230.
-
Kichatov, B., Korshunov, A., Kiverin, A., & Medvetskaya, N. (2019). Combustion of foamed emulsion prepared via bubbling of oxygen-nitrogen gaseous mixture through the oil-in-water emulsion. Fuel Processing Technology, 186, 25–34. https://doi.org/10.1016/j.fuproc.2018.12.019.
-
Kichatov, B., Korshunov, A., Kiverin, A., & Ivanov, M. (2018). Effect of ultrasonic emulsification on the combustion of foamed emulsions. Fuel Processing Technology, 169, 178–190. https://doi.org/10.1016/j.fuproc.2017.10.001.
-
Starikov, M. A., Khlebnikova, M. E., Bulanin, F. K., Sidorov, A. E., Poletaev, N. I., & Shevchuk, V. G. (2018). Combustion of dispersed liquid and solid fuel in the presence of electrical discharges. Physics of aerodisperse systems, 55, 59–70. [in Russian].
|