№ 2 (20) – 2023

TRANSFORMATION OF SIGNALS GENERATED BY FIBER OPTICS SENSORS IN THE WARNING SYSTEMS OF FIRE DAMAGE

 

https://doi.org/10.37129/2313-7509.2023.20.125-130
 
завантаження P. Vankevych 

 

завантаження N. Ftomyn, Candidate of Physical and Mathematical Sciences, Associate Professor 
 
 

Cite in the List of bibliographic references (DSTU 8302:2015)

Ванкевич П. П., Фтомин Н. Є. Трансформація сигналів генерованих сенсорами волоконної оптики в системах попередження вогневого ураження. Збірник наукових праць Військової академії (м. Одеса). 2023. № 2 (20). С. 125-130. https://doi.org/10.37129/2313-7509.2023.20.125-130
 

Abstract

An actual problem today is the improvement of a mobile optical reconnaissance system designed to detect snipers, observers, artillery correctors, including camouflaged ones equipped with optical sights. With the help of optical surveillance devices, it is possible to detect and estimate the distance to them, the principle of operation of which is based on the use of the physical effect of light reflection, which consists in the ability of optical systems to reflect probing radiation in the reverse direction at an angle close to the angle of its incidence, that is, illumination by a laser and capture of the reflected image, as well as the processing of this signal. The study of the processes of the propagation of laser radiation in the atmosphere (including in a turbulent environment) is given considerable attention in connection with the wide application of lasers in systems operating through the atmosphere. Indeed, the accuracy of laser devices of a wide range of applications (geodetic, in weapons systems and military equipment, portable, mounted in the system of combat equipment of a serviceman performing special tasks, etc.), spatial and temporal separation of laser locators, the possibility and accuracy of determining environmental parameters by remote laser methods can be estimated only taking into account the fluctuations of the field of optical beams.

Keywords

combat tasks, optical reconnaissance, sniper, conical diffraction, diffraction grating, signal element, laser, sensor.
 
 
 

List of bibliographic references

  1. Ванкевич П. П., Дегтяренко В. В., Дробенко Б. Д., Настишин Ю. А. Оптоволоконна тканина як елемент сигнальних систем. Військово-технічний збірник, 2020. Вип. 23. С. 65–74.
  2. Vankevych P. P., Drobenko B. D., Ftomyn N. Y., Chornodolskyy Ya. M., Dehtiarenko V. V., Sliusarenko A. V., Chernenko A. D., Bolkot P. A. Determining the position of a radiation source using the conical diffraction method. Journal of Physical Studies, 2022. Vol. 26, No 4. P. 4403-1-4403-5. https://doi.org/10.30970/jps.26.4403.
  3. Vankevych P.P., Drobenko B.D., Ftomyn N.Y., Chornodolskyy Ya.M., Chernenko A. D., Vankevych P.I., Derevjanchuk A.Y., Moskalenko D.R. Determination of the angle of rotation of the diffraction grating by the method of conical diffraction. Physics and Chemistry of Solid State, 2022. Vol. 23, No. 4. P. 825–829. https://doi.org/10.15330/pcss.23.4.825-829.
  4. Harvey J. E., Pfistere R. N. Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings. Optical Engineering, 2019. Vol. 58, No 8. P. 087105-1-087105-21. doi:10.1117/1.OE.58.8.087105.
  5. Harvey J. E., Vernold C. L. Description of Diffraction Grating Behavior in Direction Cosine Space. Applied Optics, 1998. Vol. 37, No 34. P. 8158–8160. doi:10.1364/AO.37.008158.
  6. Born M. and Wolf E. Principles on Optics. Seventh (expanded) edition: Cambridge University Press, 2005. 952 p.
  7. Hecht E. Optics, 4th edition. Addison-Wesley, 2011. 698 p.
 
 
 

References

  1. Vankevych, P., Dehtyarenko, V., Drobenko, B., & Nastyshyn, Yu. (2020). Fiber fabric as an element of signal systems. Military Technical Collection, 23, 65–74. DOI:10.33577/2312-4458.23.2020.65-74. [in Ukrainian].
  2. Vankevych, P. P., Drobenko, B. D., Ftomyn, N. Y., Chornodolskyy, Ya. M., Dehtiarenko, V. V., Sliusarenko, A. V., Chernenko, A. D., & Bolkot, P. A. (2022). Determining the position of a radiation source using the conical diffraction method. Journal of Physical Studies, 26, (4), 4403-1-4403-5. DOI: https://doi.org/10.30970/jps.26.4403.
  3. Vankevych, P. P., Drobenko, B. D., Ftomyn, N. Y., Chornodolskyy, Ya. M., Chernenko, A. D., Vankevych, P. I., Derevjanchuk, A. Y., & Moskalenko, D. R. (2022). Determination of the angle of rotation of the diffraction grating by the method of conical diffraction. Physics and Chemistry of Solid State, 23(4), 825–829. https://doi.org/10.15330/pcss.23.4.825-829.
  4. Harvey, J. E., & Pfistere, R. N. (2019). Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings. Optical Engineering, 58(8), 087105-1-087105-21. doi:10.1117/1.OE.58.8.087105.
  5. Harvey, J. E., & Vernold, C. L. (1998). Description of Diffraction Grating Behavior in Direction Cosine Space. Applied Optics, 37(34), 8158-8160. doi:10.1364/AO.37.008158.
  6. Born, M., & Wolf, E. (2005). Principles on Optics. Seventh (expanded) edition: Cambridge University Press.
  7. Hecht, E. (2011). Optics. 4th edition. Addison-Wesley.
Copyright 2014 20.125-130 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free