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THE PROBLEM OF INCREASING THE STRENGTH OF DISPERSE-REINFORCED
MATERIALS AS A PROBLEM OF PERCOLATION THEORY

Authors study the continuous percolation problem of clusters consisting of quasilinear and quasi-point
elements. The problem is solved by the Monte Carlo method in a cube of 10° conventional units of length.
Based on the study authors proposed the validation, ground on the percolation theory, for improvement
concrete hardening technology known by literary sources. An essential feature of technology improvement is
the creation of conditions for the appearance of percolation-type connected regions in dispersion-reinforced
heterogeneous materials. These regions consist of accumulations of metal fiber and metal powder, which at
critical concentrations cause a sharp increase in concrete strength parameters. The model is considering the
possibility of increasing the strength of the material due to mechanical stresses arising at the contact points
of concrete with fiber and powder. In addition, article describes the difficulties of the model associated with
the hyper-random nature of the data that arise during the study.
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Introduction

In the 70s of the twentieth century the elegant concept of disperse reinforcement, as is known, was
widely used in the technology of concrete production. Studies of fiber-reinforced concrete have shown that
this idea has introduced a number of interesting possibilities into building materials science and solid-state
physics as a whole. This researches opened the way for «the development of polyfunctional composite
materials that meet many (sometimes contradictory) requirements, and which possess a specific, sometimes
unique properties» [1]. One of the research directions was related to the percolation theory that began to
form at that time [2-4].

It so happened that building materials science and the theory of percolation did not immediately find
common areas of scientific exploration. Meanwhile, the study of the genesis, structure and properties of
connected areas in matter, methods of percolation theory, and the subject of the study of building materials
has much in common. Both theories use the concept of the hierarchy of a structure of matter and a fractal
structure of materials, both of them study of cluster systems, investigate the abrupt change in material
properties and other.

Percolation Problems with Quasilinear Elements («Needle» Percolation).
Analysis of Recent Research and Publications

Authors of papers [5, 6] was developed model for studying the properties of percolation clusters of
elongated elements. The model allows you to search for a threshold concentration of the conducting phase,
find contact clusters, calculate fractal dimensions of clusters, determine the length of paths within a cluster,
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simulate cluster growth dynamics, and more. As the control parameters in the model, the ratio between the
length and width of the elements and the maximum allowed angle of deviation of the elements from the axis
are used, in particular, the dependence of the percolation threshold on the angular orientation of the elements
is obtained for different ratios of the length and width of the elements.

It is shown in the work that the shape of the elongated elements weakly affects the characteristics of the
sample: threshold concentrations for rotation ellipsoids and for parallelepipeds converge for the same length
to width ratio as it tends to infinity. The authors of [5, 6] believe that the elements of percolation clusters of
the model can imitate the structure of spark breakdown: the elements of the model correspond to electron
avalanches and streamers, which are ionized sections of the gas. In the work, the effects arising from the
multiple simultaneous development of the structural elements of the spark breakdown of gases are taken into
account at a qualitative level.

In paper [7] the dependences of the properties of two-phase electrically conductive composite materials
with non-stoichiometric titanium compounds on structural parameters were found, and the nature of the
effect of additional structuring was determined. According to the authors of [7], the effect is associated with
a change in the morphology of the main conductive structure of the material formed by geometrically
anisotropic filler particles, which is represented by a system of unidirectional conducting channels and a
mesh structure formed by the connection of these channels by conducting bridges of filler particles. This
conclusion was drawn from the simulation, in which the shape of the needle particles in the powders of the
fillers varied significantly: the ratio of length to width was from 35 to 58.

In [8] was described model for calculating the density of a cluster of carbon fillers in carbon-cement
composites. The authors found that if the concentration of carbon fillers slightly exceeds the percolation
threshold, then the conductive critical exponent is not universal, and increases with increasing concentration
of carbon fillers, and the density of the percolation cluster decreases [8]. For experimental verification of the
results, in particular, to determine the actual density of the main (percolation) cluster of fillers, cement
composites reinforced with carbon fiber with various concentrations were prepared, and the conductivity
current was measured. The results showed that near the percolation threshold, the concentration of carbon
fillers is approximately 0.15, which is in good agreement with the simulation results [8].

The electrical conductivity of a carbon fiber reinforced cement composite was studied in [9]. The
authors discovered a microstructure associated with the phenomena of electrical percolation: the conduction
mechanism was interpreted as being associated with contacting fibers. The changes in electrical conductivity
were studied at three different load levels: the threshold value of percolation decreased with increasing load;
and also depending on the volume fraction of fibers: at a concentration exceeding the critical, the
conductivity of the samples increased by several orders of magnitude. The influence of the volume fraction
and length of the fiber on the sensitivity of the measurement of electrical conductivity is shown. The results
provide information for the manufacture of conductive and, in fact, intelligent cementitious composites
reinforced with carbon fiber [9].

In paper [10] the percolation behavior of nanocomposite systems filled with anisotropic particles with a
core-permeable shell structure was studied by the Monte Carlo method. A two-dimensional version of the
composite is studied, which is formed taking into account the mutual correlations of the spatial arrangement
of particles and using the continuum version of the random sequential adsorption model. The authors of [10]
found that the percolation transition in such systems is restrained by the formation of a saturated layer: the
percolation cluster arises only if the thickness of the permeable conducting shell exceeds the minimum value,
which increases with an increase in the aspect ratio. For orientationally ordered composites, anisotropy of
electrical conductivity was observed, which intensified with increasing aspect ratio and filler concentration.

Numerical and analytical studies of the onset of percolation in high-aspect-ratio fiber systems such as
nanotube reinforced polymers available in the literature have consistently modeled fibers as penetrable,
straight, capped cylinders, also referred to as spherocylinders. In reality, however, fibers of very high-aspect
ratio embedded in a polymer do not come into direct physical contact with each other, let alone exhibit any
degree of penetrability [11]. Further, embedded fibers of very high-aspect ratio are often actually wavy,
rather than straight. In paper [11] authors evaluate the effect of allowing penetration of the model fibers on
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simulation results by comparing the soft-core and the hard-core approaches to modeling percolation onset.
Authors [11] use Monte Carlo simulations to investigate the relationship between percolation threshold and
excluded volume for both modeling approaches. The results show that the generally accepted inverse
proportionality between percolation threshold and excluded volume holds for both models. In paper
demonstrate that the error introduced by allowing the fibers to intersect is non-negligible, and is a function of
both aspect ratio and tunneling distance. Thus while the results of both the soft-core model and hard-core
assumptions can be matched to select experimental results, the hard-core model is more appropriate for
modeling percolation in nanotubes-reinforced composites. The hard-core model can also potentially be used
as a tool in calculating the tunneling distance in composite materials, given the fiber morphology and
experimentally derived electrical percolation threshold [11].

The onset of electrical percolation in nanotube-reinforced composites is often modeled by considering
the geometric percolation of a system of penetrable, straight, rigid, capped cylinders, or spherocylinders,
despite the fact that embedded nanotubes are not straight and do not penetrate one another. Authors [12]
investigate the effect of fiber waviness on percolation onset. In [12] authors present the results of Monte
Carlo simulations studying the effect of waviness on the percolation threshold of randomly oriented fibers in
three dimensions. The excluded volumes of fibers were found numerically, and relationships between these
and percolation thresholds for two different fiber morphologies were found. Results paper [12] show that for
high- aspect-ratio fibers, the generally accepted inverse proportionality between percolation threshold and
excluded volume holds, independent of fiber waviness. This suggests that, given an expression for excluded
volume, an analytical solution can be derived to identify the percolation threshold of a system of high-aspect-
ratio fibers, including nanotube-reinforced composites. Further, in [12] researchers show that for high aspect
ratios, the percolation threshold of the wavy fiber networks is directly proportional to the analytical straight
fiber solution and that the constant of proportionality is a function of the nanotube waviness only. Thus the
onset of percolation can be adequately modeled by applying a factor based on fiber geometry to the
analytical straight fiber solution.

Computer experiments to study the structure and properties of ferroceramics were described in [13]. In
papers particular attention is paid to the formation of macroscopic connectivity for individual elements of the
microstructure and the development of brittle cracks. In addition, the authors investigated the similarity
between percolation transitions and the processes of molding, sintering and fracture in technological
processes for producing ferroceramics. Based on the idea of the percolation nature of these processes, the
articles formulate the concept of the formation of the microstructure of ferroceramics as a sequence of
geometric phase transitions, which allowed us to simulate the effect of various microstructural factors on the
fracture parameters.

This approach allowed the authors [13] to create computer programs describing real technological
processes for producing ferroceramics, in particular, to simulate the processes of crack formation by
percolation clusters with linear elements that simulate the sections of cracks.

An analysis of computer experiments showed that if the change in the traditional characteristics of
ferroceramics used to assess the degree of completion of technological processes (density, porosity, etc.) is
monotonous, then percolation characteristics (average size of small clusters, probability of belonging to a
connecting cluster, etc.) have abnormal behavior. Based on this, an assumption was made and analyzed that
during geometric phase transitions in real ferroceramics anomalous behavior of such physical characteristics
as shear modulus, electrical conductivity and others is possible [13, 14].

In [15] the percolation threshold of hard prolate ellipsoids of revolution dispersed in a continuum is
obtained as a function of the aspect ratio. First random close packing of ellipsoids is produced by a dropping-
and-shaking protocol. Two ellipsoids are regarded as connected when they come sufficiently close. Then a
given fraction of ellipsoids selected randomly is removed and percolation of remaining ellipsoids is
investigated as the fraction of remaining ellipsoids is varied. It is shown that the critical volume fraction of
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the colored ellipsoids is a decreasing function of the aspect ratio and that the aspect ratio dependence is well
fitted by the inverse of the interaction range determined by the surface area and the radius of gyration of the
ellipsoid surface [15].

Authors [16] present an in-depth analysis of the geometrical percolation behavior in the continuum of
random assemblies of hard oblate ellipsoids of revolution. Simulations were carried out by considering a broad
range of aspect ratios, from spheres up to platelike objects with aspect-ratio equal 100, and with various
limiting two-particle interaction distances, from 0,05 times the major axis up to 4,0 times the major axis. Paper
[16] confirm the widely reported trend of a consistent lowering of the hard particle critical volume fraction with
increase of the aspect ratio. Moreover, by assimilating the limiting interaction distance to a shell of constant
thickness surrounding the ellipsoids, we propose a simple relation based on the total excluded volume of these
objects which allows us to estimate the critical concentration from a quantity that is quasi-invariant over a large
spectrum of limiting interaction distances. Excluded volume and volume quantities are derived explicitly.

For further progress of the “needle” percolation, the 3D-percolation problem with a mixture of two types
of elements — lines and dots is formulated and study; at the same time, for study mechanism of the original
technology of concrete hardening, the percolation model of fiber reinforced concrete strengthening is proposed.

Formulation of Goals

The goals of research are to create a percolation model of the phenomenon of hardening, and to determine
the range of values parameters of the material, which must ensure increased strength.

Research Material.
Percolating Model of Fiber Reinforced Concrete Strengthening

In [17] the original technology of obtaining steel fiber reinforced concrete with high tensile strength is
described. The authors of [17] found that in the developed by them concrete a steel fiber is surrounded by a thin
layer, approximately 5+10 microns, the strength of which is about 2,24 times bigger than the strength of
concrete. In order to increase the surface area of steel interacting with concrete, the authors of [17] have
changed the ratio between the length, and diameter of the fiber used, and an iron powder was introduced in the
cement paste too. Testing of the samples showed that their tensile strength can be 4+4,5 times higher than the
strength of the concrete matrix [17].

A significant feature of the structure of dispersion-reinforced heterogeneous materials is the presence of
formed (as a rule, in stochastic processes) fiber and powder clusters. At critical concentrations, these clusters
form a connected region of percolation type, causing a structural phase transition. Therefore, they abruptly
change the properties of the sample.

In the model, which we proposed, investigated the percolation problem with quasi-point and quasi-linear
cluster elements firstly formulated by us for investigate in computer experiments the situations like one
described in [17].

The problem is solved by the Monte Carlo method in a cube with a size of 10° conventional units of
length. The elements that form a model metal cluster are created in a cube using an algorithm that uses a
random number generator (RNG) with a uniform distribution. In each model experiment, the fiber has a fixed
length: three, five, or seven arbitrary units. Its position is determined by the RNG: it sets the coordinate of its
beginning, and then selects from the set (0, £30°, £60°, £90°) the angle of rotation relative to the coordinate
axes. Single fibers are considered to be connected if they have a common point or the distance between them
does not exceed some specified one. This distance plays the role of a control parameter in the model, as does
the length of the fiber. Another parameter of the model is the powder particle diameter. The diameter in each
model experiment has a fixed value: one, two, or three arbitrary units of length. The conditions for the
integration of quasi-point elements between themselves and with the fiber are determined similarly.
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The model considers two factors that can lead to an increase in concrete strength. Firstly, these are small
and percolation clusters of fiber and powder, providing dispersed reinforcement. The second hardening
factor is the mechanical stresses that can occur during the compression of metal clusters with hardened
concrete [18-20].

In [18] it was theoretically study occurrence of mechanical stresses depending on the shape of
inclusions. Author [18] shown that quasi-point inclusions create mechanical stresses o, which decrease with
distance as ¢ ~ 7 . At concentrations of fiber and powder, sufficient for the existence of a metal percolation
cluster in concrete, the mechanical stresses in the material decrease much more slowly with distance. They
can be approximated by the following law ¢ ~ ', and is due to a structural phase transition. A number of
parameters change abruptly in the material [4], in particular, a dedicated direction arises [4, 21], and a
percolation cluster creates slowly decreasing mechanical stress fields in the material. In their configuration,
they resemble fields of quasi-linear defects [18, 22]. A typical fragment of the configuration of the stress
field in concrete (based on model experiments) is shown in the Fig.1.

Fig. 1. A fragment of the mechanical stress field, which created by the metallic clusters in the model experiment

The dependences of the percolation threshold and the fractal dimension of a percolation cluster on the
concentration of the filler and fiber and powder fractions were studied in our model experiments. At that the
percentage of these elements was controlled. To verify the results, we used the percolation threshold for a
cluster consisting only of powder, equal approximately to 18% [4].

The simulations revealed an unanticipated subtlety. According to the results of model experiments, it
can be seen that the magnitude of the percolation threshold P, and the fractal dimension D of the cluster
consisting of both components in single-type experiments vary in too wide limits, for example, D = 1,41 +
1,71 and P. = 0,09 + 0,23. We deliberately increased the number of model experiments to five thousand, but
the scatter of results could not be reduced. May be possible to get closer to the explanation of this
phenomenon by the idea of so-called hyper-random variables [23]. They arise in the study when it is
impossible to ensure the statistical stability of the phenomenon. Essential for the situation in question is that
«the hyper-random estimates in the general case are not consistent, i.e. with an increase of the sample size,
their error does not tend to zero» [23]. At the same time, each of the results for the given values of the
control parameters was obtained with an error standard for such problems, approximately about 12 percent.

An analysis of the results showed that within the specified conditions the dependences of these
characteristics on the parameters of the problem (fiber lengths and clustering conditions) are non-monotonic.
For model clusters of fiber and powder, the following laws were obtained, similar to [1, 21, 24]:

— for long fibers, an increase in the maximum deflection angle leads to a decrease in the fractal
dimension of the percolation cluster, for small lengths — its growth is observed;
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— for large angles at a fixed value of the maximum angle, the value of the percolation threshold
increases with increasing fiber length; for small angles — vice versa;

— at a fixed maximum deviation angle with an increase in the length of the fiber: for large angles, the
fractal dimension decreases and the cluster power increases, for small angles — vice versa;

— at a fixed fiber length, with increasing maximum deflection angle, the power of the percolation cluster
will increase and the value of the percolation threshold will decrease.

Conclusions

The quality of concrete, which is a matrix composite, is largely determined by the properties of the
inclusions and the features of their cluster systems. In addition, they are the source of volumetric
deformations: many parameters of the material depend on their composition, shape, volume, size
distribution, and others.

The proposed model, which was provoked by experimental study [17], made it possible for the first time
to investigate the percolation problem with clusters constructed of quasi-linear and quasi-point elements.
Thus, the study of a new problem of percolation theory has been formulated and started, as well as initial
data on some parameters and features of the cluster structure of steel inclusions in concrete have been
obtained. The hyper-random nature of results of the simulation described in this article as a require further
research.

The authors would like to thank Prof. V. Sukhanov and Prof. A. Vandolovsky for useful discussions.

References

1. Herega, A. The Selected Models of the Mesostructure of Composites: Percolation, Clusters, and
Force Fields. Heidelberg: Springer. 2018. 107 p.

2. Sokolov, 1. M. Dimensionalities and other geometric critical exponents in percolation theory. Sov.
Phys. Usp., 1986. Vol.29, Pp. 924-945.

3. Mandelbrot, B. B. The Fractal Geometry of Nature. San Francisco: Freeman. 1982. 479 p.

4. Feder, J. Fractals. New York: Plenum Press. 1988. 283 p.

5. Lamazhapov Kh.D., Rybakov D.A. Percolation model of avalanche-streamer breakdown. Applied
Physics, 2008, Vol.6, Pp. 83-88. (In Russian).

6. Lamazhapov Kh.D., Rybakov D.A. Percolation breakdown criterion. 37-th Int. Conf. “Plasma
Physics”, Zvenigorod, 2010, P. 209.

7. Ishkov A.V., Sagalakov A.M. Investigation and simulation of the structural features of composites
containing conducting nonstoichiometric titanium compounds. Technical Physics Letters, 2006, Vol.32(6),
Pp. 474-476.

8. Ning Xie, Xianming Shi, Decheng Feng, Bogiang Kuang, Hui Li. Percolation backbone structure
analysis in electrically conductive carbon fiber reinforced cement composites. Composites Part B:
Engineering, 2012, Vol.43(8), Pp. 3270-3275.

9. Xiufeng Wang, Yonglan Wang, Zhihao Jin. Electrical conductivity characterization and variation of
carbon fiber reinforced cement composite. Journal of Materials Science, 2002, Vol.37(1), Pp. 223-227.

10. Lebovka N.1., Vygornitskiy N.V., Goncharuk A.l. Percolation transition and anisotropy of electrical
conductivity in nanocomposite systems filled with particles of an anisotropic shape with a core-permeable
shell structure. Nanostructured materials science, 2011, Vol.4, Pp.57-65. (In Russian).

11. Berhan L, Sastry A.M. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus
hard-core models. Phys. Rev. E, 2007, Vol.75(4), 041120.

12. Berhan L, Sastry A.M. Modeling percolation in high-aspect-ratio fiber systems. II. The effect of
waviness on the percolation onset. Phys. Rev. E, 2007, Vol.75(4), 041121.

10



BiiicekoBa akangemis (M. Oneca) 30ipauk HaykoBuX mpais Ne 1 (13) w.I1 2020

13. Dashko Yu. V., Kramarov S.0O. Percolatoin model of the sintering of ferroelectric ceramics.
Ferroelectrics, 1995, Vol.164, Pp.329-337.

14. Dashko Yu. V., Kramarov S.0., Protsenko T.G., Derbaremdiker L.A., Popov S.V. Sintering of
ferroceramics as succession of phase transition. Proc. of 8-th European meeting of ferroelectricity.
Nijmegen, Netherlands, 1995, Pp. 10-36.

15. Akagawa S, Odagaki T. Geometrical percolation of hard-core ellipsoids of revolution in the
continuum. Phys. Rev. E, 2007, Vol.76(5), 051402.

16. Ambrosetti G, Johner N, Grimaldi C, Danani A, Ryser P. Percolative properties of hard oblate
ellipsoids of revolution with a soft shell. Phys. Rev. E, 2008, Vol.78(6), 061126.

17. Vandolovskiy A.G. et al. The technology of creating steel fiber concrete with increased tensile strength.
Proceedings of the Kharkov National University of Air Force, 2018, Vol.2(56), Pp.126-131. (In Russian).

18. Kosevich A.M. Physical Mechanics of Real Crystals. — Kiev: Naukova Dumka, 1981, 328 p. (In Russian).

19. Herega A. Modeling of cluster structures in the material: force fields and descriptors. Fizicheskaya
mezomekhanika, 2013, Vol. 16, No.5, Pp.87-93. (In Russian).

20. Herega A., Sukhanov V., Vyrovoy V. The Model of the Long-Range Effect in Solids: Evolution of
Structure Clusters of Interior Boundaries, and Their Statistical Descriptors. AIP Conference Proceedings,
2017, Vol. 1909, 020069.

21. Herega A. Physical aspects of self-organization processes in composites. 1. Simulation of
percolation clusters of phases and of inner boundaries. Nanomechanics Science and Technology: An
International Journal, 2013, Vol.4(2), Pp. 119-132.

22. Herega A. Physical aspects of self-organization processes in composites. 2. The structure and
interaction of inner boundaries. Nanomechanics Science and Technology: An International Journal, 2013,
Vol.4(2), Pp. 133-143.

23. Gorban' I.1. Hyper occasional functions and their description. News of universities. Izvestiya vuzov.
Radioelektronika, 2006, Vol.1, Pp.3-15. (In Russian).

24. Herega A.N., Iskanderov A.S., Yaroshenko S.N. Development of percolation models of physical
systems. Izvestiya AN Ukraine SSR, Seriya fiziko-matematicheskaya, 1990, Vol.6, Pp. 51-56. (In Russian).

IMPOBJIEMA HNIJBUIIEHHSI MIIIHOCTI JTMCIHEPCHO-APMOBAHUX MATEPIAJIIB
SIK 3AJTAYA NMEPKOJISILIIMHOI TEOPII

K. Konskos, B. Ceprees, I'. Tpymkos, A. I'epera

Y emammi Odocnioocena 6idoma 3a nimepamypHumu OAHUMU OPUSIHATLHA MEXHONO02I NIOGUUIeHHS MIYHOCMI
bemoHy cymiwuro cmaneeozo nopowky i @iopu. OnepabenvHicmes mMexHOI02I ma OOCMYRHICMb iHepedieHmie, uo
BUKOPUCMOBYIOMbCA, poOaams ii npugabiugor npu OyOi6HUYMEE WUPOKO2O KIACYy CHOpYO 5K YUBIIbHUX, MAK |
cneyianbHo20 npusHauenus. Ilemomua ocobaugicme MmexHon02ii — CMeopeHHs 8 OUCNEPCHO-APMOBAHUX 2emepO2eHHUX
Mamepianax 36's13Hux obracmerl NEPKOIAYIUHO20 MUNY, WO CKIAOAIOMbCA 3 Klacmepie cmanesoi iopu i nOpowKy, sKi
npu KPUMUYHitl KOHYeHmMpayii BUKIUKAOMb CMpUOKonodiony 3MiHy napamempie 6emony, 30Kpema, MiyHOCMi.

Y emammi nadano ooxknaonuii 0230 cmany 8usyenHs, MAK 36aHOL, «20IK080I» NEPKOAAYIT 3 OCMAHHI 08a0YAMb POKIS.

lna oocnidoscenns cmpykmypu i eracmugocmeli Mamepiany, W0 CMBOpeHull 3a 32A0aHO0I0 MexXHOJI0ZIE,
PO3po0OIeHa NepKOAYIIHA KOMN'TOMepHA MOOelb CIPYKMYPHO20 (haz08020 nepexody, wo smiyHioe. ¥ mooeni enepute
BUPIWEHA KOHMUHYAIbHA NEPKONAYIUHA 3a0aia KIacmepis, wo CKIA0amsbCsi 3 K6A3IMOYeYHUX i KeazLMiHIuHUX
enemenmie. 3adaua eupiuyemvcs memodom Monme-Kapno & ky6i posmipom 10° ymoenux oounuys dosocunu. Y
KOMN'TOMepHUX eKCNepumMeHmax OMmpuMaHi 3HAYeHHs: NepKOIAYIUHUX napamempis xkiacmepis. Ananiz pezyromamis
NOKA3A8, WO 3ANEHCHOCMI YUX XAPAKMepucmuk ei0 napamempis 3adaui (0oedxcunu ibpu i ymoe 00'€OHanH: 6
Kaacmep) Maoms HeMIHIUHUL HEMOHOMOHKULL Xapakmep.

B mooeni makooic pozensioaemoca MorHcugicms nioSUWeHHs MIYHOCMI 34 PAXYHOK MEXAHIYHUX HANPYIHCEHb, WO
3apoodCyIOmbCs 8 MicysAx KoHmakmy bemony 3 @ibpoio i nopowkom. Takodi 002080pIOEMbCA MEXAHIZM BUHUKHEHHS
MEXAHIYHUX HanpYye, IHMEeHCUBHICMb AKUX BUSHAYAEMbCA IX KOHGDI2ypayiero.

Y cmammi onucani mpyoumowi mooeni, nog’sazami 3 2inepeunaoOKo8UX XapaKxmepom 6eIuyuH, w0 SUHUKAIOMb 8
00CidHCeHi.

Knwuosi cnoea: bemon, oucnepcre apmMy8ants, NepKoIAYIUHULL nepexio; MexaHiuHe HanpyiCeHHs, 3MiYHeHHs.
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MMPOBJIEMA INOBBIINEHUS ITPOYHOCTU JUCITEPCHO-APMUPOBAHHBIX
MATEPHAJIOB KAK 3ATAYA TEPKOJIAIIMOHHOM TEOPUH

K. Konskos, B. Ceprees, I'. Tpymkos, A. ['epera

B cmamwe uccnedosana uzeecmmas no aumepamypHviM OAHHLIM OPUSUHALLHASL THEXHOAO2USL NOGLIULEHUS
npoyHOCMU OemoHa CcMecblo CMAIbHO20 nopowka u @uopel. OnepaberbHOCMb MEXHOAO02UU U OOCMYHHOCHb
UCHONIb3YEMbIX UHESPEOUEHMO8 0elalom ee NPUBeKAMeNbHOU Npu CIMpPOUmMenibCmee WUpoKo20 KIacca CoOPYICeHUll Kaxk
2PANCOAHCKUX, MAK U CReyuanrbHo2o Hasuavenus. Cyuecmseennas 0coOeHHOCHb MEXHON02UU — CO30aHUue 8 OUCNEPCHO-
APMUPOBAHHBIX 2eMEPOLEHHBIX MAMEPUATIAX CEA3HbIX 00IaAcmell NePKOJAYUOHHO20 MUNA, COCMOAWUX U3 KIACMEPOs
CmanvbHol Puopvl U NOPOWIKA, KOMopbvle NPU KPUMUYecKoU KOHYEHMPAayuu 6bi3bl8aion CKA4KO0OpasHoe usmMeHeHue
napamempog 6emona, 8 YaCMHOCMU, NPOYHOCHIU.

B cmamve 0an nodpobmvii 0630p cocmosnus ucciedo8anull, max HA3vlBAeMOuU, «U20IbYAMOUY NEPKOAYUU 3d
nocieonue 08a0uamn Jjiem.

s uccnedosanus cmpykmypul U C80UCME MAMEPUANO8, CO30AHHbIX NO YKA3AHHOU MEeXHOA02UU, pa3pabomanda
NEPKOISIYUOHHASL KOMILIOMEPHASL MOOENb CIMPYKIMYPHO20 (a306020 nepexodd, nosvlulaioue2o npouHocnv. B moodenu
6nepevie peuleHa KOMMUHYANbHAS NEPKOIAYUOHHBIE 3a0a4a KIACMEPOos, COCMOSWUX U3  KBA3UMOUEUHbIX U
KeazunuHelinbix snemenmos. 3adaua pewaemca memodom Monme-Kapno 6 xybe pasmepom 10° ycnoenvix eounuy
OnuHbl. B KOMRblOmepHvIX dKChepuMeHmax noay4eHsbl 3HaYeHus: NepKOJAYUOHHLIX Napamempos Kiacmepos. Ananus
Pe3yIbmamos noKasaJ, Ymo 3a8UCUMOCIIU IMUX XAPAKMEPUCTIUK OM Rapamempog 3adaqu (OnuHvl uopsl u ycioeuil
00beQUHeHUsL 8 KIACMED) UMEIOM HEUHEUHbIN HEMOHOMOHHbLI XAPAKmep.

B moodenu paccmampueaemcst 603MOACHOCHb ROGBIUEHUS NPOYHOCMU 34 CYEM MEXAHUYECKUX HANpsdicenull,
Komopbule 3apoxcOarmcs 6 Mecmax Koumakma bemona c ¢ubpou u nopowxom. Takdce obcyxcoaemcs Mexanusm
B03HUKHOBEHUSL MEXAHUYECKUX HANPSICEHUL, UHMEHCUBHOCHb KOMOPLIX ONPEOeslemcst ux Kongueypayuetl.

B cmamve onucanvl mpyonocmu mooenu, Ces13annble ¢ SUNEPCYVUALHBIX XAPAKMEPOM GEIUYUH, BO3HUKAIOWUX 6
uUccne008aHuuU.

Knwuesvle cnosa: 6emon; oucnepcroe apmupoganue, NEPKOISYUOHHLLIL NEPexod; MeXaHUYeckoe Hanpsicenue;
YHpOuHeHue.
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